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ABSTRACT

'A//.\./.‘._,_',. ,

“In the main body of our report}we developed an asymptotic
ray theory that predicts correctly the exterior resonant frequencies
of a sphere. A logical extemsion of this work is to spheroids
where, unlike the sphere, the polar ray orbit resonance condition
is nontrivial. The idea is thus to extend the results to separable
coordinate systems, so that the WKB resonance condition can be
applied independently to the rays along the three coordinate paths.
The radial ray path remains trapped between a scattering surface

and the turning point caustic.

At this point the results of this addendum are only formal

and tentative. No numerical work has yet been carried out.
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INTRODUCTION

As a further development of our ideas, let us set up the
exterior resonance conditions on a prolate spheroid. Since
natural frequencies are available in the literature for this body,
this computation can be checked against existing theory [1].

Thus we introduce the spheroidal coordinates (u, 6,9 ) by

stating their relation to the Cartesian coordinates (x, y, z).

X = a sinhu sin 6 cos ¢
y = a sinhu sin 8 sin ¢ (A.1)

z = a coshu cos 6

The u = constant surfaces are confocal prolate spheroids rota-
tionally symmetric about the z axis. In the limit u =+ «, and
a *~ 0 such that r = a sinhu is finite, the system (A.l) returns
to the usual spherical system (r, 6, ¢). Let us define the

contravariant vectors

u1 = coshu N x1 = X
uz = cos @ x2 = y (A.2)
u3 = ¢ x3 - 2

Then the fundamental arc length formula is defined to be

3
ds2 = 3
i,i=1

gij dui duj (A.3)
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1

h23 = az((ul)2 -1) (1~ (u2)2)

Since the metric tensor 8ij is diagonal, the prolate spheroidal
coordinate system is seen to be orthogonal. From the scale factors
hi as given by (A.3) one computes the Laplacian operator according
to the prescription

3
Vs o 2o B ©(A.5)
Vg i=1 5u du
where
.z o222
9y 2 B hy by By det(gy )

i

The scalar wave equation (V2 + kz)w = (

takes the form

1 3 1,2 3 2,2, 3y
{ (W = D] + =% [(1-@)H) 1}
(ul)2 - (u2)7 Bul Buz Buz
4 2v (A‘6)
+ 1 3Y _+ ka)? v =0,

(whH? - DA-@WH? 32
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Using the usual separation of variables techniques we let

v o= R@H 0 Wd) o wd). (A.7)

Substitution of (A.7) into (A.6) eventually leads to the following

three separated ordinary differential equations for R, O and ¢.

2
(wh? - rYeh’ + @? @h? - —E—+ VREH= 0
(u")™-1
' 2
- e @ - @? @2+ —Zos Do wh =0
1=-(u®)
" (63 +mf o (u) =0 (A.8)
In (A.8), m2 and A are the separation constants. The equation

for ¢(u3) requires that m be an integer to satisfy physical comstraint

3

that u3 = (0 be the same point as u~ = 2w,

The rotational symmetry of the érolate spheroid about the z
axis as follows from equation (A.l) determines the separation con-
stant m. Consequently, the two remaining unknowns for the geometric
computation of resonant frequencies are the wave number k and the
separation constant A,

The two conditions needed to determine k and )\ are the polar
resonance orbit and the radial resonance orbit. In the latter con-

dition the "orbit" is between the turning point caustic and the

surface of the spheroid.

bty




POLAR ORBIT RESONANCE CONDITION

Because of the analytic nature of the phase function, there
is no loss of generality to simplify the polar resonance condition
by computing it for m = 0 and also just inside the caustic surface.
By inspection of the radial differential equation for R given in

(A.8), the turning point caustic satisfies the equation

2

A = =0% cosh®(u) , @ = ka (A.9)

where from (A.l) u is seen to be the radial coordinate.
In (A.9) we have introduced ), the large parameter of this
asymptotic calculation. The differential equation for O as given by

(A.8) under these conditions becomes
2 ' ! 2 2 2
((~x") T'(x)) + " (cosh® u = x7) T(x) =0 (A.10)

where x = u2 = cog O and T(x) = © (cos €), To utilize the WKB
approach, we make the further change of variables

y = tanh l(x) , % () =T (x) (A.11)
in (A.10) to obtain

W+ L e = o (A.12)

where
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coshzu - tanh<z)1/2 (A.13)

f(y) = ¢
cosh’y

From (A.13) it is seen that there are no finite turning points. Thus

the WKB solution of (A.12) is

¥ (y) = exp(1 Q5(y)) (A.14)
where the phase function S(y) is

S(y) = J E(y")dy' + 55 In (£()) + 0() (4.15)
y 9]

Returning to the original angle variable 8 through the trans-
formation cos O = tanhy, the real (SR(G)), and imaginary (SI(G)), parts
of the phase function S(0) become

® 2 2404172
SR(G) = [ . (cosh®u =~ cos“8"') de’ (A.16)

/2

SI(B) = E%- 1n [(coshzu - cosze)l sin 9] (A.17)

Let us interpret this result geometrically by computing a geometric
optics solution of a ray traveling along a polar orbit on the spheroid.

The geometric optics ray solution wG 0 (6) takes the form

Vo0, (® = ol K1(8) (A.18)

vhere 1(3) = [ ®ds , s =/ (@m? + @z)? (A.19)

0

From (A.l) the arc length increment ds is easily seen to be

/2 a0 (A.20)

dg = a(coshzu - cosz 8)1




Thus from (A.16) and (A.18) through (A.20)

‘PG.o_(e) = exp (1 Q Sz (:))) (A.21)

| Y

Comparing the geometric optics field (A.21) with the WKB solution
(A.14), it is seen they differ by terms of order 0 (1/2). The

attenuation factor SI(G) is of order 0 (1/Q) and accounts for ray tube f

- T Y

3 spreading on the curved convex ray path.
;J The polar resonance condition consists of requiring that the
polar phase S(8) satisfy the global comdition
27
Q J S(6) d8 = 2new
0
ng = 1,2,3....

A Because of four-fold symmetry this can also be written as

/2
Q J S(9) db6 = ne w2 (A.22)
0

It remains to evaluate the integral in (A.22). Separating the
phase function into its real and imaginary parts according to (A.i6)
and (A.17) produces two integrals. The imaginary part can be evaluated

in terms of elementary functions. One determines

A 1r/2 T

J S.(8) do = Zﬁ-[u - 2 1n 2] (A.23)
| o
p The corresponding integral of SR(G) is expressible in terms of

1 elliptic integrals of the second kind. This is not surprising. Elliptic

AL L 2o iy Sk i
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integrals were originally encountered in the calculation of the

perimeter of an ellipse [4]! Manipulation of (A.1l6) results in
5.(8) = csea {E(sin%a) - E(T/2 - 8\a)) (A.24)

where

o = SJI.n-'1 (

)

coshu

and the elliptic integrals of the second kind are defined as [5]:

¢
0

E(f\a) = J (1 - sin? o sin? 8)2/2 40 (A.25)

and the complete integral E(sin a) is defined as

m/2
E(sima) = E(T/2 o) = J (1 - sin? o sin® )12 (a.26)

0

Substituting (A.24) into the resonance condition (A.22) requires the

integral
m/2 2 /2 2 2
J SR(G)de = csea {m/2 E(sin“a) - J 8(1 ~ sin“acos“8) do}
0 0
(A.27)
/2 2 2,.1/2
= csca { J (r/2 - 8) (1 - sin“ acos“9) de}
0

Combining results (A.22), (A.23) and (A.27) yields the resonance

condition

/2 ngm
Q eseo { j (/2 -8)Q - sinztucosze )l/2 del + %}(u-z 2n2) = -5
0

where

- -1 1 2 . A
o = Sin (—_coshu) , cosh'u = - = (A.28)

7’




Equation (A.28) contains two unknowns, A and ). The required addi-

tional condition is now considered.
RADIAL RESONANCE CONDITION

As was described in the main body of the report, the radial
resonance condition requires that the evanescent ray path between the
scattering surface and the turning point caustic be an integer number
of wavelengths. Included in this phase resonance are the discontinuous
phase change at the caustic surface and, if necessary, at the surface

of the scatterer.

To begin, we consider the radial differential equation for

R(ul) as given in (A.8). In it let

s = coth™ (u}) , ¥ (s) = R (uD) (A.29)

This is the legimitate change since u1 Z coshu > 1, The equation for

P(s) becomes

P'(s) + 8> nz(Q) P(s) = 0 (A.30)

where

2 2
a2 (8) = &ch?(ﬂ - EE + -)32- csch?s (A.31)
sinh“(s) Q Q
The caustic surface is defined by the positive value of s denoted by

S, such that

n(sc) =0 (A.32)

The solution to (A.32) is the proper root of
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22 + 2 @+ 12 + m2m2)1/2]1/2

-1
8. = sinh [ >

m>0

1, -9

[
Q% + 2

]

s, = sinh

m=0

When m = 0, it is therefore necessary that -A/Q2 > 1,
For eigenvalues which correspond to bound discrete modes to
exist, it is required that the effective refractive index profile

nz(s) have the property that

nz(s) <0 S < s < Sy

2
n“(s) =0 s = s (A.34)
nz(s) >0 s < s,

In (A.34) sy, defines the spheroid surface. The radial res-
onance condition for a perfectly conducting prolate spheroid with the

electric field normal to the surface is

s
29 J ¢ n(s)ds = 27 (nr - 1/4) (A.35)

s

b

nr = 1,2,3-.0
In (A.35) s, is the surface of the spheroid defined by
coth(sb) - cosh(ub) where w defines the spheroid through equation (A.1l)

when u = . An explicit form of the radial resonance is

P
J ¢ (@ -p(s +)) -piHl/2 4P 21i(n_ - 1/4)
P, PP F 1

(A.36)




2
Pb = cosh up - 1 and

2
P, ~ 1/2 L@ + 2/ah% + 22 L v aedy)
Q

The simultaneous solution of (A.28) and (A.35) for A and

constitutes the formal asymptotic solution to the exterior resonant

frequencies of a perfectly conducting prolate spheroid.
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